Automated analysis of optic nerve images for detection and staging of papilledema.
نویسندگان
چکیده
PURPOSE To develop an automated system that analyzes digital fundus images for staging and monitoring of optic disc edema (i.e., papilledema), due to raised intracranial pressure. METHODS A total of 294 retrospective, digital photographs of the right and left eyes of 39 subjects with papilledema acquired over the span of 2 years were used. Software tools were developed to analyze three features of papilledema from digital fundus photographs: (1) sharpness of the optic disc border, (2) discontinuity along major vessels overlying the optic nerve, and (3) texture properties of the peripapillary retinal nerve fiber layer (RNFL). A classifier used these features to assign a grade of papilledema according to a standard protocol used by an expert neuro-ophthalmologist (RK). RESULTS The algorithm showed substantial agreement (κ = 0.71, P < 0.001) with the neuro-ophthalmologist when grading papilledema per patient. Vessel features showed statistical significance (P < 0.05) in differentiating grades 0, 1, and 2 from grades 3 and 4, whereas disc obscuration differentiated grades 0 or 1 from the rest (P < 0.05). CONCLUSIONS These results show that this algorithm can be used to automatically grade papilledema. The algorithm provides objective and quantitative assessment of the stage of papilledema with accuracy that is comparable to grading by a neuro-ophthalmologist. One application is in rapid assessment of digital optic nerve photographs acquired in clinical, intensive care, and emergency response settings by nonophthalmologists to evaluate for the presence and severity of papilledema, due to intracranial hypertension.
منابع مشابه
Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform
In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...
متن کاملAutomatic Optic Disc Center and Boundary Detection in Color Fundus Images
Accurately detection of retinal landmarks, like optic disc, is an important step in the computer aided diagnosis frameworks. This paper presents an efficient method for automatic detection of the optic disc’s center and estimating its boundary. The center and initial diameter of optic disc are estimated by employing an ANN classifier. The ANN classifier employs visual features of vessels and th...
متن کاملMorphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal
Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملEarly Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods
Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 52 10 شماره
صفحات -
تاریخ انتشار 2011